Tight Distance-regular Graphs and the Subconstituent Algebra

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Taut distance-regular graphs and the subconstituent algebra

We consider a bipartite distance-regular graph Γ with diameter D ≥ 4 and valency k ≥ 3. Let X denote the vertex set of Γ and fix x ∈ X. Let Γ22 denote the graph with vertex set X̆ = {y ∈ X | ∂(x, y) = 2}, and edge set R̆ = {yz | y, z ∈ X̆, ∂(y, z) = 2}, where ∂ is the path-length distance function for Γ. The graph Γ22 has exactly k2 vertices, where k2 is the second valency of Γ. Let η1, η2, . . . ...

متن کامل

Tight Distance-Regular Graphs

We consider a distance regular graph with diameter d and eigenvalues k d We show the intersection numbers a b satisfy k a d k a ka b a We say is tight whenever is not bipartite and equality holds above We charac terize the tight property in a number of ways For example we show is tight if and only if the intersection numbers are given by certain rational expressions involving d independent para...

متن کامل

Tight Distance-regular Graphs with Small Diameter

We prove the following bound for a k regular graph on n vertices with nontrivial eigenvalues from the interval r s n k rs k r k s Equality holds if and only if the graph is strongly regular with eigenvalues in fk s rg Nonbipartite distance regular graphs with diameter d and eigenvalues k d whose local graphs satisfy the above bound with equality for s b and r b d are called tight graphs and are...

متن کامل

The subconstituent algebra of a bipartite distance-regular graph; thin modules with endpoint two

We consider a bipartite distance-regular graph Γ with diameter D ≥ 4, valency k ≥ 3, intersection numbers bi, ci, distance matrices Ai, and eigenvalues θ0 > θ1 > · · · > θD. Let X denote the vertex set of Γ and fix x ∈ X. Let T = T (x) denote the subalgebra of MatX(C) generated by A,E ∗ 0 , E ∗ 1 , . . . , E ∗ D, where A = A1 and E ∗ i denotes the projection onto the i th subconstituent of Γ wi...

متن کامل

Distance-regular graphs, pseudo primitive idempotents, and the Terwilliger algebra

Let Γ denote a distance-regular graph with diameter D ≥ 3, intersection numbers ai, bi, ci and Bose-Mesner algebra M. For θ ∈ C ∪∞ we define a 1 dimensional subspace of M which we call M(θ). If θ ∈ C then M(θ) consists of those Y in M such that (A−θI)Y ∈ CAD, where A (resp. AD) is the adjacency matrix (resp. Dth distance matrix) of Γ. If θ = ∞ then M(θ) = CAD. By a pseudo primitive idempotent f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 2002

ISSN: 0195-6698

DOI: 10.1006/eujc.2002.0597